On the K-theory of Groups with Finite Asymptotic Dimension
نویسندگان
چکیده
It is proved that the assembly maps in algebraic Kand L-theory with respect to the family of finite subgroups is injective for groups Γ with finite asymptotic dimension that admit a finite model for EΓ. The result also applies to certain groups that admit only a finite dimensional model for EΓ. In particular, it applies to discrete subgroups of virtually connected Lie groups.
منابع مشابه
The Integral K -theoretic Novikov Conjecture for Groups with Finite Asymptotic Dimension
The integral assembly map in algebraic K-theory is split injective for any geometrically finite discrete group with finite asymptotic dimension. The goal of this paper is to apply the techniques developed by the first author in [3] to verify the integral Novikov conjecture for groups with finite asymptotic dimension as defined by M. Gromov [9]. Recall that a finitely generated group Γ can be vi...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملControlled algebraic G-theory, II
There are two established ways to introduce geometric control in the category of free modules—the bounded control and the continuous control at infinity. Both types of control can be generalized to arbitrary modules over a noetherian ring and applied to study algebraic K-theory of infinite groups. This was accomplished for bounded control in part I of the present paper and the subsequent work o...
متن کاملA remark on asymptotic enumeration of highest weights in tensor powers of a representation
We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...
متن کاملOn Homological Coherence of Discrete Groups
We explore a weakening of the coherence property of discrete groups studied by F. Waldhausen. The new notion is defined in terms of the coarse geometry of groups and should be as useful for computing their K-theory. We prove that a group Γ of finite asymptotic dimension is weakly coherent. In particular, there is a large collection of R[Γ]-modules of finite homological dimension when R is a fin...
متن کامل